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MATRTX METHOD FOR OBTAINING SPANWISE MOMENTS AND
DEFLECTIONS OF TORSIONALLY RIGID ROTOR BLADES
WITH ARBITRARY LOADINGS

By Alton P. Mayo
SUMMARY

A matrix solutlon for the spanwise bending moments and deflections
of a torsionslly rigid rotor blade subjected to an arbitrary loading is
presented. The method includes the cantilever, teetering, and hinged
blades in hovering and in steady forward flight. The method is compara-
tively short, involves only standasrd matrix procedures, and does not
require that the mode shapes or natural frequencies be known.

INTRODUCTION

Numerous methods are avallable for calculating the uncoupled span-
wise bending moments and deflections of rotor blades in steady unaccel-
erated flight. Some of these methods (refs. 1 and 2) involve tabular
solutlions of the differential equation of blade deformation. These
tabular procedures are very lengthy, particularly when numercus loading
conditions and rotor speeds are beling investigated. Other methods
(refe. 3 and 4) require the calculetion of the natural-mode shapes asnd
frequencies of the blade. The calculations of mode shape and frequency
are lsborious and either must be repeated for each rotor speed or an
approximate correction must be applied to account for the effects of
rotor speed. A matrix method which avoids some of the difficulties of
the tabular and modal solutions is presented in reference 5; however,
tabular solutions of the equation for blade bending moment under quasi-
static conditions ere required before the method can be applied.

In the present method the differential equation for blade bending
moment is solved entirely by matrix procedures. The method permits the
determination of the bending moments and deflections directly without
preliminary quasi-static, mode-shape, or natural-frequency calculations
and, as a result, the method is shorter and much work is eliminated.
The method is adapteble to cantilever, semirigid (teetering), and fully
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articulated (hinged) blades in hovering and in steady forward flight and
is applicable to design calculations and experimental data analyses.

The differential equation for the blede bending moment is composed
of matrix expressions for the centrifugal inertia, vertical inertia, and
damping loadings, and the contribution of each term to the blade losds
and moments may be determined. The effect of blade structural damping,
which has been omitted in other methods, is included in the present
method. Comparisons are presented between the bending moments cbtained
by this method and the method of reference 3 for the first harmonic
loading on a fully articulated blade and the second harmonic loading on
a cantilever blade.

SYMBOLS

Some of the symbols listed in this section are illustrated in
figure 1.

A blade-element average aerodynamic damping coefficient,
-4 pee oz, Insped?

a blade-element lift-curve slope, per radian

c blade chord (at center of blade element), in.

EI blade bending stiffness, lb-in.2

F centrifugal force acting on mass of blade element divided
by €, lb-sec? --

g structural dempling coefficient

h perpendicular distance from axls of rotation to flapping
hinge, in.

i imaginary component of complex number, J:i

1 blade running loed, 1b/in.

L load on blade element, 1b

M bending moment, lb-in,
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Subscripts:

Q

=< B S

1b-gec2

mass of blade element, o

number of blade elements for extended matrices

distance from center of hub to blade tip, in.

spanwise distance from center of hub (measured along
undeflected blade), in.

width of blade element, in.
forward veloecity, in./sec

elements of an influence coefficient matrix (see table III)

blade deflection, measured from a plane of rotation per-
pendicular to shaft axis, in.

rigid-blade flapping angle, measured from a plane of
rotation perpendicular to shaft axis, radlans

angle of flexible blade at hinge, measured from a plane
of rotation perpendicular to shaft axis, radians

blade slope due to blade bending, dz/dr, radians

rotor angulsr veloclty, radians/sec

angular frequency of applied loading, radians/sec

Ib-sec2

air density,
in.h

blade azimuth angle (measured in direction of blade rota-
tion from downwind position), radians

serodynenmic

cosine component

damping

due to forces perallel to plane of rotation

inertia
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L pertaining to a load station

r pertaining to a spanwlse station

8 structural

S sine component

1,2,...n station number or number of harmonic

v due to forces perpendicular to the plane of rotation
w blade weight

z deflection

f centrifugal loading

A dot over a symbol indlcates first derivative with respect to time.
Two dots indicate second derivetive with respect to time.

Matrix notation:
[ ] rectangulear or square matrix

diagonal matrix

1
inverse of & square matrix

row matrix

[ ]
{ } column matrix
[ I
L J

METHOD

The differential equation for the structural bending moments of
hinged, teetering, and cantllever rotor blades is set Jip in matrix form.
Matrix expressions for the blade moment due to the various blade loadings
are derived and added to form the blade-moment equation. The differen-
tial equation is first derived in & generalized form and is later adapted
to (1) the case where the rigid-blade aerodynamic loads are known from
design calculations and the flexible-blade structural moments or deflec-~
tions, or both, are desired; (2) the case where the blade structural
moments are known from strain-gage tests and the total aserodynamic
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moment, including serodynamic dsmping, is desired; and (3) the case
where the aerodynemlic loads have been measured and the structural moments
are desired. The procedure for obtaining the rotating-blade character-
istic matrix is also presented so that the natural modes and frequencies
may be determined.

Blade Loadings

In the calculation of spanwise bending moments, a torsionally rigld
rotor blade or its equivalent (an elastic blade for which the section
moments are zero and the aserodynamle center, elastic axis, and center of
gravity coincide) may be treated as a simple beam subject to numerous
superimposed loadings. If chordwlse effects are excluded, the blade in
the forward flight condition is subjected to the following distributed
loads:

(1) The serodynamic load L, (excluding the aerodynamic damping

effect which is directly proportional to blade flexure plus flapping
deflection velocity; see item 5)

(2) The centrifugal load F

(3) The blade weight Ly
(4) A normal inertias loading due to vertical accelerations Lyiy

(5) An serodynsmic demping load Lgy (defined by eq. (5)), directly

proportional to blade deflection velocity due to both flepping and
flexure

(6) The blede structural demping load Lgg

The combined moments of these six loadings sre balanced by the blade
internal moment due to blade bending resistance.

Derivation of Blade Moment Equations

The blade geometry, the forces acting on an infinitesimal ele-
ment of the blade under forward-flight conditions, and the resulting
force system are shown in figure 1. From figure 1 it 1s seen that the
bending moment M,, at any station r, due to the loads acting on the
blade is given by:
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R k-
Mpp = ly(r - rp)dr - 1z - zp)dr (1)
Ty Tn _ o

The matrix equivalent of equation (1) may be written in the form

{M} = [r] {LV} - 02[F]{z} (2)

Equation (2) corresponds to a step-diagram representation of the
ly and 1y loadings of equation (1). The [r] matrix is an integrating

matrix with values thet depend on the stations and integration method
used. The [F] matrix incorporates the values of the horizontal loads
{LiH} (dimensional with respect to rotor speed) as well as integrating

numbers. The [r] and [F] matrices are derived in the eppendix.

Substituting the filve components of {LV} enumersted previously

into equation (2) yields the following bending-moment equation of the
combined loadings:

{4} = BI{ta} + 1T} + D {lga} + My} + BT {lao} - PE] {2}
(3)

Equation (3) is the general form of the equation for blade bending
moment used in this study and pertains to hinged and cantilever blades
in hovering and forward flight. In order to obtain the blade bending
moment for amy specific loading condition, the matrix expressions for
the various loads acting are substituted into equation (3).

Loading matrices.- The expressions for the various component loads
in equation (3) become quite simple if equation (3) is restricted to the
expression of the moments due to loadings of a single frequency. The
total aerodynamic loads on the blade masy be broken down into components
which are of a sinusoidal nature, and the standard procedure is to
develop equation (3) for the moment due to a single frequency. Super-
position mey then be used to obtain the total moments due to s8ll of the
harmonic components on the blade. The loading matrices which asppear in
equation (3) are given by the three following equations.

For a particular frequency w of the applied sinusoidal load, the
vertical inertia loads {Liv} are given by
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[tay} = 02 Fn]{z} ()

where the elements of the Em] matrix are the masses of the blade
elements.

The aerodynamic damping loads {Lda} are given by

{Lag) = 100fa] {2} (5)

where the diagonal matrix [A] is equal to [—% pacr Ar;l

The elements of the [A] matrix can be deduced from steady aero-

dynamics for the 1ift on a section of chord c¢ and length Ar rotating
at unit angular velocity and with a unit normal velocity.

The structural damping moment [r] {Lds} is given by

[r1{tag = -1g [1.0] {Mg} (6)

Moments and deflections at a single frequency.- The blade }oadings
at a perticular frequency o (eas. (&), (5), and (6)) may be substituted
into equation (3) in order to obtain the equation for the blade moment in
terms of the structural moment, the aerodynamic moment, and the blade
deflections as

f1+ 1g] {Ms} = [r]{La}_ + 100 (7] [al{z} + 2¥][n]{z - 0?[F] {2}
(7)

The deflection {2z} in equation (7) 1is composed of the flexural

bending and the effects of blade-rcot rotation. The flexural bending
is defined in the appendix as

{z} = [2] (8)

The total blade deflection including root rotation is, therefore,
given by

{z} = [2y] s} + { - B} tan By (9)
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For small angles tan By =~ By, and in the equations to follow, which are
based on assumptions of small angles, By 1s assumed equal to tan By.
Equation (9), therefore, becomes

{2} = [[zM] {r - h}:l e} (10)

Substituting equation (10) into equation (7} yields the following
relation between the aerodynamic loads and the structural noments for
the flexible blade:

[(1.0 + 1g) -[Eéﬂiig}- 02 [F] [[ZM] fr - h}] @ [Mzy] [[z,,ﬂ ir - h}]

1o [r][A] [[zM] E {r- h}]:l %:’.%. = ] e} (11)

where

I:sz:l [I‘-J Em

The partition lines of equation (11) effectively separate structural
moment effects from root slope effects, both of which act to balance the
aerodynamic moment., If the root slope Bh__is set equal to zero, the

terms pertaining to the root slope drop out and the resulting equation
is the equation for a cantilever-blade bending moment. The cantilever-
blade equations are given in detall in a subsequent sectlon.

Equation (11) may be inverted in order to obtaln the reciprocal
matrix relation _

] Jow o [Eg-gllz’@l} 2 ¥ [[ZM] fr - o] -

o2l B - 3] - wot30] [ e - 1)) )

(12)
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where

{Ma} = [r] {La}

Equation (12) gives the structural moment {Ms} and root slope By

on the rotating hinged blade in terms of the applied aerodynamlc moment
{Ma}. The equation includes the effect of the aerodynsmic damping, which
is proportional to the total deflection velocity.

When calculations are to be made for many rotor speeds, it is advan-
tageous to put equation (12) in the form

-1
Y
{}f‘i} (1.0 + 1ig) ----Q {-‘} + 02[N] {Ma} (13)
where the matrix [N:l is evaluasted for each harmonic, and

07 - [[e1[fnd e - 23] - 5] [P - o] -

i %Lr] Y IIZM] ;{r - h}]] ) (1)

The matrix [N] need be evaluated only for each harmonic number.

Hovering condition.- Equation (12) , which was derived for the
forward-flight condition, would also spply to the hovering condition if
the terms which pertain to the blade vertical velocity and acceleration
are omitted. Because the hovering aerodynasmic loads are steady, g =0
and o = 0; and the equation for hovering becomes

. -1
%131 = %aig-éigl + 02[F] [[ZM:H {r - hH {Ma} (15)

is zero

Cantilever-blade equations.- If the blade-rooct angle Bh

in equations (12) and (15), the result is the equation for the cantilever
blade in forward flight;
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o} = 010 + 16[1.0] + P[] - 0PDoy] ] - 100 GI0AD ] e}
(16)

or

{MS} = [[1.0] + ig[1.0] + a2[F] (2] - 02 [Mpy] [By] -

wldla ] e} (an

If the calculations are to be made for mmerous rotor speeds, equation (17)
mey be put in the same form as equation (13).

The cantilever-blade equation for the hovering condition is:
=1 -1
{MS} = [El.o] + 2[F] [zM:U {me} (18)

CALCULATION PROCEDURES

Matrix Evaluation

The calculation procedures presented are illustrated for the hinged
blade. The details given pertain to the ten-segment breakdown of the
blade load, welght, and stiffness distribution shown in figure 2. The
procedure for either a cantilever or & teetering blade is a simplifica-
tion of the hinged-blade case. The particular blade-section breakdown
in the matrix tables (see figs. 2 and 3) was selected to provide more
stations near the root of the blade where rapid changes in blade moment
and stiffness occur. The number of blade elements used may be increased
by the procedures given in the sppendix for increasing the order of each
matrix. However, 1t is believed that for most blades ten stations are
gufficient.

In order to apply the hinged-blade equations, it is first necessary
to evaluate the various matrices in the equations. The hinged-blade
equation, previously given as equation (12), is

N
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{Lfé}_’}, (1.0 + 1g) [-Eé?]-%-{-}} 22[F] [[ZM] i{r - h}]

o2 [} - »F] - w063 fd - 23] o}

The structural damping coefficient g is a function of the fre-
guency, and the value used should correspond to the value of w for

which the equation is being evaluated. The matrix Soo23Lll) i3 an

identity matrix where the zero, as the last element on the diagonal,
imposes the condition of zero structural moment at the blade hinge.
This matrix is given in table I. The matrix [Fﬂ expresses the moment
on the blade caused by the centrifugsl forces acting on the deflected

blade. The [F| matrix is given in teble II. The metrix [Eqi] {r - hﬂ

expresses the blade deflection caused by the structural moment and the
root slope. This matrix is given in table IITI. The matrix [yzi]

expresses the vertical inertia moment in terms of the blade deflection.
[3203 matrix is given in table IV. The [r] matrix is an inte-

grating matrix which expresses the moment of a losding and is given in

table V. The matrix [A] expresses the aerodynamic damping load in
terms of the blade defilection. The matrix EA] is given in table VI.

The number of digits needed in the evalustion of the various matrices
and in the succeeding operations for the most accurate results has not
been rigorously established. However, limited experience has shown that
carrying the basic masses, distances, stiffnesses, and so forth to four
digits and, in succeeding operations, allowing the number of digits to
accumulate to a maximm of ten gives good results. The procedure for
filling out the glven matrix tebles is as follows:

(1) Set up the identity matrix as shown in table I, whiech is
already completed in its entirety and may be used as is.

(2) Obtain the weight distribution for the blade and break it down
into ten elements of equal length. Determine the mass of each element.
Use the product mr for each element as described in the appendix, and
fill out table II.

(3) Obtain the stiffness distribution for the blade and break it
dowvn into the smaller elements shown in figure 2. Use these stiffness
values and the values of Ar2 and f£ill out table III.
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(k) Use the mass values of item 2 and fill out table IV.
(5) Substitute the value of Ar into table V.

(6) Use the values of the chord of each element, the lift-curve
slope of each element, the radius to the center of each element, and
the values of p and Ar, and fill out table VI.

Applicetion to the Hinged Blade

The equations for the hinged blede are applied to those problems
which are believed to be the most general. The cases discussed include
the determination of (1) the flexible-blade structural moment due to
the rigid-blade serodynamic loads; (2) the structural moment due to the
measured serodynamic loads; (3) the moment of the total serodynamic
loading as determined from the measured structural moment; and (4) the
aerodynamic demping load. The procedure for cobtaining the natural
modes and frequencies of the blade 1s also discussed since, in some
cases, this information may be desired.

Structural moment due to rigld-blede serodynamic loads.- The stand-
ard design practice is to obtain the rigid-blade total loading from '
rigid-blade serodynamic load and inertia balence equations. The rigid- ' v
blade aerodynamic and inertia loads are then applied to the flexible
blade which is considered to flex about the rigid-blade position. This
procedure. i8 equivalent to the application of the rigid-blade aerodynamic
loed only (minus an serodynamic demping component which is proportional
to 2) to the equation for the flexible blade which was derived as equa-
tion (12) and in which the deflections are referenced to the plane of rota-
tion perpendiculer to the shaft. The equivalence of the standard design
procedure and the procedures of the present method is proved by the
following:

The rigid-blade total load (aerodynamic plus inertia) which is nor-
mally applied to the flexible blade (considered to fleéx about the rigid-
blade position) is given by

_ w2
Lrigia = (La)rigid mrf - mo<rp (19)
botal total

where the terms on the right-hand side of the equatlon represent the
rigid-blade aerodynemic, vertical-inertia, and centrifugasl-inertila loads,
respectively. Since the equations of the present method asre written in
terms of moment, it is useful to convert equation (19) to its moment
equivalent. Also, it is useful to express each term in equation (19) in
the matrix form. Thus, equation (19) becomes
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{Mrigid} = [r]{( o) rigid} + 0P [Myy] {zrig_id} - @2[F] {7rigra} (20)

total total

where the terms on the right-hand side of the equation are the rigid-
blede aerodynamic, vertieal-inertia, and centrifugel-inertie moments,
respectively.

If the rigid-blade moments given by equation (20) are applied to the
flexible blade, which is caonsidered to flex about the rigid-blade posi-
tion, the following equation results:

Moment of rigid-blade lcading

,EI‘] {(La) rigid} + 0P My {zr1g1a} - 9P[F] {zrigid? =

total

Moment of flexible-blade loasding

1.0+ 1)t} + PO fegy,) - 200y] fopren} - 200 irsen)

(21)

The terms on the right-hand side of the equation give the moments
associated with the blade deflection {Zflex}- about the rigid-blade

position. These terms, from left to right, represent the blade-bending,
the centrifugal-inertias, the vertical-inertisas, and the aserodynamic-
damping moment, respectively. Equation (21) implies that the blade
moments resulting from the flexible-blade deflections must balance the
applied rigid-blade moment. The flexible- and rigid-blade deflections
Zrlex 804 Zpjgyq 8re shown in figure 1(b). If it is recognized that
Zplex Plus Zrigid is equal to the deflection =z (measured with

respect to the plane of rotation) and if the terms of equation (21) are
collected, then the following equation results:

] {(La)rigm = (1.0 + 1) (Mg} + 92[F {z} - oP[Uy] {7} -

total
1[I0 A] {221 0x} (22)

Adding the term ~iw[ri[A] {zr 1 gid} to both sides of equation (22},
collecting terms, and rearranging yields
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(1.0 + 1&){Mg} = [r]{La} + 1 EFI[A}{E) + 0?Myy) {7} - 92[F] {z}
(23)

where

{Te} - {(La)rigid} - 1Al ey gia} (2k)

total

Equation (23) is recognizeble as equation (7) where {La} is

defined as the total rigld-blade aerodynamic load minus a component
which 1s proportional to the rigid-blade deflection velocity. The matrix

Lszj is equal to the matrix multiplication [ri[m] shown in
equation (7).

Substituting {zrigid} = {r - n}p in equation (24) yields
{La} = (La)rigid - iﬂnEA]{r - h}B (25)
total

The flexible-blade moments, therefore, may be determined by epplying
equation (25) (the rigid-blade total aerodynamic load minus a rigid-blade
deflection-velocity load) to the flexible-blade equation (eq. (12)) which
is referenced to the plane of rotation.

In order to obtain the flexible-blade structural moment due to
rigid-blade airloads:

(1) Obtain the rigid-blade total aerodynamic load for each harmonic
and remove the flapping effects by using equation (25).

(2) Use the loeding just obtained along with the previously deter-
mined maetrices, and obtain the moment by means of equation (12).

The reason the rigid-blade loads were handled in this manner was to
keep the blade equations referenced to the plane of rotation in order to
provide for more general spplications. o -

Structural moment due to measured airloads.- The procedure for the
cese of measured alrloads is as follows: Since measured loads Include
all aerodynemic damping effects, the aerodynamic dasmping term is dropped
from equation (12) and the aerodynamic moment ‘{Mé} is given by
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{Ma} = Eﬁ]{Lmeasured}' Equation (12) is then applied by use of the pre-
determined matrices to obtain the structural moment..

If the hinged-blade equations are used with measured airloads where
o =0 and the equations involve no aerodynamic demping, the last row
and last column autometically drop out of equations (11) and (12) when
the matrix multiplications are performed, and B, 1s no longer involved

in the solution. This behavior of the equations is consistent with the
physical concept of blade rotation in the plane of no flepping or rigid
mode resonance.

Moment of total aerodynamic loading as determined from measured
struectural moment.- A requirement for determining the total aerodynamic
moment is that the blade flapping angle at the root of the flexible
blade By be measured as well as the structural moment. The procedure,

then, is to apply equation (11) and drop the serodynsmic damping term
from the equation because the structural moments are a result of the
total loads applied to the blade.

The aerodynemic moment obtalned is thus the total aerodynamic
moment and includes the moment due to 8ll of the aerodynamic damping
loads.

Aerodynamic damping loads.- In some of the foregoing applications
it may be desired to determine the merodynamic damping load or moment
which is proportional to the blade total deflection veloecity 2z in
order to remove these effects from the meassured data. The load and
moment linearly related to the deflection velocity are given by

(rae} - o0l [l - 9] ekl

and ( (26)

(ige) = 000D [fmd - ] otk

Pn

LN

Py

M
The values of £-§l msy be either from measurements or from cal-
Pn
culations for the lower harmonics, but By, would probably have to be

calculated for the higher harmonics because of its extremely small
magnitude.
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Determination of blade natural modes and frequencies.- If the blade
rotating natural modes and frequencies are desired, the procedure for
thelr determination is as follows: . '

(1) Solve equation (15) for unit loads applied at the center of
each of the ten blade elements.

_ (2) Use equation (10) and the results of step (1) and determine the
deflections due to the unit loads.

(3) Set up the numbers from step (2) in matrix form, postmultiply
by the diagonal mass matrix [m], and follow standard iteration proce-
dures. (See ref. 6.)

The ten-element breakdown of the blade allows ten degrees of free-
dom and thus permits the calculation of ten natural modes and frequen-
cies; however, the use of the standard iteration procedure for obtaining
accurate results sbove the fourth natural frequency is rather difficult
because the iterations converge slowly at these higher frequencies.

Application to Cantilever and Teetering Blades

The foregoing procedures were based on the hinged blade. When the -
problem is for a cantilever blade, the only change is to use the corre-
sponding cantilever-blade equation and matrices. The cantilever-blade
equivalents of the hinged-blade equations (10) and (25) are not given
but are obtained by making Bh and B equal to zero in these equations.

The cantilever-blsde matrices are given in tables I through V as the
elements above and to the left of the dashed partition lines.

In an analysis of a teetering blade, the even harmonic loadings are
considered as applied to a cantllever blade; the odd harmonic loadings
are considered as applied to the hinged blade. The reasons for the dif-
ferent considerations for different harmonics is that even harmonic
loadings are symmetrical loadings, that is, of equal sign on both sides
of the hub; the odd harmonic loadings are unsymmetric. -

NUMERICAL EXAMPLES

In order to 1llustrate the method, it is applied to a cantllever
and to a zero-offset hinged blade. Both blades were of the same weight
and stiffness, with the exception that the stiffness of the hinged blade
was zero at the hinge. The welght and stiffness distributions are given
in figure k. '
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The aerodynemic loading applied to the hinged blade in forward
flight is shown in figure 5(a). The loadings shown are plots against
spanwise station of assumed Zl,c and ll,S coefficients for the first

harmonic of measured blade airloads as defined by
Zl’r = Zl,C cos ¥ + ll,s sin ¥

By using the loading of figure 5(a) and the welght and stiffness of the
blade shown in figure L4, the structural moment coefficient shown in
figure 5(b) was calculated by means of equation (12). The aerodynamic
demping term of equation (12) was dropped because measured loads already
included aerodynamic demping effects. The effects of structural damping
were not included, although the ineclusion of structural damping in the
equations should improve the accuracy of the calculations for the case
where the blade is near resonance. However, near blade resonance, the
effects of small errors in the calculated blade welght and stiffness on
the calculated results are likely to be large, and the problem requires
extreme sccuracy in all components.

The structural moments calculated by the modal method of reference 3
for the loading of figure 5(a) are also shown in figure 5(b). For these
calculations the first four natural rotating modes and frequencies were
used in equations of reference 3. The aerodynamic demping terms were
dropped from the equations. The mode shapes and natural frequencies
were obtained by the method previously outlined in the calculation pro-
cedures, As can be seen in figure 5(b), the agreement of the results
obtained by the two methods is very good.

The serodynamic loading applied to the cantilever blade was the
forward-flight second-harmonic loading shown in figure 6(a). The
loadings shown are plots against spanwise station of assumed 12 c and

3

12,8 coefficients for the second harmonic of measured airlocads s&s
defined by

Za,r = 12’0 cos 2¢ + 12,8 sin 2¢

This loading and the weight and stiffness distribution of figure L were
used in equation (17) to calculate the structural moments shown in
figure 6(b). Also shown in figure 6(b) are the results cbtained by the
method of reference 3 by using the same aerodynamic loed (from fig. 6(a))
and four rotating symmetrical modes and naturel frequencies. The results
calculated by the present method and by the method of reference 3 are
seen in the figure to be in good agreement.

The structurel moments on the rotating hinged and cantilever blades
caused by 1l00-pound loads applieéd at verious spanwlse stations are given
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in figures 7 and 8. The moments were obtained by the use of equations (15)
and (18). By using the curves for the moment on the cantilever blade
caused by 100-pound loads st verious stations and the aerodynamic loads
measured at various stations in the hovering test of reference T, the
structural moments in hovering were calculated. The calculated moment

and the blade deflections for the hovering conditlon are shown in figure 9.

The various matrices used in the example calculations are shown in
tables VII to X. The elements above and to the left of the partition
lines pertain to the cantilever blade. The matrix of all of the given
elements pertains to the hinged-blade case,

CONCLUDING REMARKS

A matrix method has been derived for determining the structural
moment and deflections of hinged, teetering, and cantilever blades. The
method avoids any preliminsry mode shape, natural frequency, or quasi-
static calculations and, as & result, is comparatively short and involves
only standard matrix procedures.

The equations are well sulted to the determination of the blade
bending moment at various rotor speeds and for numercus loadings. The
method puts no restriction on the blade deflection shspe and thus permits
the blade to assume more complex shapes that could be simulated by the
superposition of four natural modes, as is usually employed in a modal
method of solution of the differential equation for blade bending moment.
Thus, the present method should give more accurate resulis than the modal
solution for the higher harmonice, where the blade deflection and load
distribution are of a more complex shape.

The method includes the effects of the primary inertia and damping
loads on the blade and also incorporates meinly the following assumptions:
(1) small angle consideration, (2) step diagram of the blade mass and
stiffness, (3) step integration procedures, and (L) steady aversge aero-
dynamic considerations in the dsmping terms. In addition, the method
does not include the effects of: (1) radial change of mass position
with blade deflection, (2) variation of rotor speed with azimuth angle,
and (3) any torsional considerations. Some of the effects of the step
distributions may be removed by increasing the number of blade elements;
however, for most blades ten elements should be sufficient.

The inclusion of structural demping in the equations should improve
the accuracy of the calculatlions for the case where the blade is near
resonance. However, near blade resonance, the effects of small errors
in the ‘calculated blade weight and stiffness on the calculated results
are likely to be large, and the problem requires extreme accuracy in sll
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components. These unfavorable factors, in some cases, could be somewhat
offset by experimental determination of the elements of the influence
coefficient matrix [ZM] and the mass of the blade elements and by some

experimental estimate of the structural demping. In ceses where the
blade is not near resonance with one of the applied load frequencies,
the structural damping term is relstively unimportant and may be dropped
from the equations for blade bending moment.

Langley Aeronsutical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., May 7, 1958.
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APPENDIX
BASIC INTEGRATING MATRICES

Moment of an Arbitrary Loading

The general bending-moment equation (eq. (1)) is given as

R R
Mep = Zv(r - rn)d.r - f IH(Z - Zn)d-r

n 'n

In thie section the matrix emiivalent of the expression -

R
Myn = f ly(r - xp)dr (a1)

is derived.

The integration of equation (A1) may be accomplished by using a
procedure based on step, trapezoldal, or parabolic representation of the
loading. In the present method the step disgram is used, and the load
is considered to act at the center of each step.

The procedure for obtaining the moment of a loading is as follows:

(1) The loading is replaced by a system of equivalent concentrated
loads as shown in the following sketch:

L
L )
In 2 L5 k

Arbitrary load station arrangement
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(2) The moment due to the loading 1s desired at the stations shown
in the following sketch:

M M M3 My
I I l [

— b-er
*———————-TM5'—J _dJ

Arbitrary moment station arrangement

The loads are centered for 10 equal stations at 0.05(R - h), 0.15(R - h),
0.25(R - h), and so forth, whereas the moments are teken at stations
0.85(R - h), 0.75(R - h), and so forth except near the root where stations
at 0.0125(R - h) and 0.0625(R - h) are used to include possible hub
effects.

With the arrangement Just shown the moment equation is given as

Y It 1T 1)

M1 Tl T2 oz Tl [t wn mn taff |1

Mo Ty T2 Tz Tik e TM2 TM2 M2 Lo
< ? = - < > ( A2 )
M3 Tl fr2  Tiz Ly ™3 M3z TM3  TM3|| |13

& A - S A I L T A Y IR R

In equation (A2) any elements of negetive sign resulting from the
subtraction are to be replaced by zeroes since the moment contrilbution
of the loads inboard of a moment station is zero.
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If the rectangular matrix of equation (A2) is symbolized by [r],
then equation (A2) may be written as

{M} = [r] {L} (A3)

which is the matrix equivalent of

R
Mpp = f lv(r - rn)dr
Tn

where the integral is to be evaluated at a selected number of stations.

The [r] matrix is given in table V for the ten load and moment
stations of figures 2 and 3. The matrix of table V may be extended to
include more statlons by expending the equation {M} = [r] {Ly as shown
in equation (AlL), where the rectanguler matrix postmultiplied by the
diagonal matrix is equal to the {[r] matrix.

4 r - . 9 r 3
M_35W 1 0 0 0 o 0 0 o o 0o o o© L.gs
M5 2 1 o 0 0 0 0 o o o o o L.gs
M. 65 3 2 1 0 o o o o . 0 o o o L.75
M g 4 3 2 1 0 0 0 o.. o a o o0 1,65
M.u5 5 " 3 2 1 0 0 o 6 o o o L.55
Jués. 6 5 " 3 2 1 o 0 6 o o6 o JL¢5
> = o b (ab)
Moo T 6 5 L 3 2 1 0 o 0 o o L 35
M5 8 T 6 5 4 3 2 1 o o o o L 25
¥, 0625 8.87 7.87 6.8 5.87 4.87 3.87 2.8 1.8 0.6f 0 O © L.15
M, 0125 9.37 8.37 T.37 6.37 5.31 k.37 3.37 237 137 O 037 © L0625
...... camm mmmm e e mmee o mmon e —mmm o e = L,05
* 95 85 7.5 65 55 k5 35 25 7L5 0 05 0 L0125
L - § /
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To extend the matrix to more stations, continue the given number
sequence of the rectangular matrix and obtain more rows at the top and
more columns on the left. Keep unity numbers on the diagonal and zeroes
on the right. The moment stations are then the given stations (shown in
table V) multiplied by lO/ne, (where ne 1is the new number of blade

_elements), end the obtained sequence 1s continued columnwise in order +o
provide additional stations. For example, the elements of the first

column of a 20-station arrangement would be 1, 2, 3, 4, 5, 6, . . . 16,
17, 18.87, 19.37, and 19.5(r - h)/(R - h); the load stations would be
0.025, 0.075, 0.125, 0.175, . . . 0.925, and 0.975(r - h)/(R - h); and

the moment stations would be 0, 0.00625, 0.03125, 0.0725, 0.125, 0.175,
. 0.875, and 0.925(r - h)/(R - h).
Moment Due to Horlzontal Forces Acting on a Deflected Blade

The general bending-moment equation of the text (eq. (1)) is

R R
Mppn = \/q Iv(r - rn)dr - k/1 ZH(z - zn)dr
r T,

n

In this section the matrix equivalent of the expression

R

My = _j zH(z - zn)dr (a5)
Th

is derived.

The system of equivalent horizontal concentrated loads, as shown in
the following sketch, is again used, although some other representation
might produce slightly more accurate results at the expense of simpliecity.

Lay T

S e




24 NACA TN L30L

At station ry; the moment due to horizontal centrifugsl forces may
be written as

My ="[LH)+(Z1+ - 21) + Igz(z3 - 21) + Ipp(2n - Zl)] (46)

Collecting terms and writing equation (A6) in matrix form yields

Z
L
n=h
{Mrl} = -|Lgy LE3 L@z - >_ L@} {%3 (A7)
n=2 Zo
2]

If this procedure is now applied and extended to obtain the moments due
to the centrifugal inertia forces at ten selected moment stations on the
blade, the following matrix equation results:

£.95
Mo fo -Fio o 0 0 ° [ o 0 o o 0 1 L
Mipo T ¥ -S ¥, ) o [ o _0 o 0 o o .8

pe] .
o» ~
Kyy8 Mo Fy g -f Fn 4 [ [ "0 [ 3 [} 0 3} .65
=8 - :
Wiy Fig T b A Fp -i"" b o 0 .o ° o ° o %58
n=T -
Ming Fiop K rg Fy 13 -E; T ° [ 0 ° Q 0 iy
D
2
- = N
Wi | L Fg Fq Fg rs _g;_z Fy 0 ) o o o 41.55 p (a8
D=
My, Py Ty Fg ¥ g s R -%ui R O o o o %28
e
ps- .
Mg ¥io Ty Fg r; 13 s i 5 - 2 Py 0 0 o %15
Dm
n=l0
Hino Fo Fg Fg ¥r 3 s Py F3 F2 2 _F, O o £, 0525
D=2
S

¥ Ty Ty -7 7 Fg Fs R s » L N = | (.08
- -’

L’.o:\z5
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where

Lmo
Fi0 = m10%10 = —~
Q

Iyg
F = m9r9 = e—
9 Q2
Im
Fy=mr = 2

If the rectanguler matrix of equation (A8) is symbolized by [F]

(given as table II), then equation (A8) may be written in shorter form
as

{5} = -a?[F] {z} . (49)

R
which is the equation Myp = :/1

Tn
to be evaluated at selected stations. The moments Mjg are the moments
on the blade caused by the centrifugal forces acting on the deflected
blade.

ZH(z - zn)dr in matrix form and is

In order to extend the matrix equation (A8) to n stations, make
all of the negative summations on the shown diagonal go from Fp to Fy,
where k is the subscript of the F wvalues in the preceding column as
illustrated. The elements off the dilagonal of swmations are obtained
by extending the indicated sequence to Fp. The new moment and deflec-

tion stations are lO/ne times the given stations, and the obtained

sequence is extended columnwise for additionsl stations. The new blade-
element arrangement has to have equal-length increments Ar.
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Blade Deflection Due to Structural Moments

For the blade the general bending-moment equation of the text
(eq. (7)) is given as

[1+ 1g) (Mg} = [x]{Ta} + 100 [x] [A] {7} + 0?[x] fm) {z} - @2[F]{z}

In subsequent derlvations, a matrix expression for the deflection {g}

is required. The deflection {z} is composed of & component due to

the flexible-blede root slope and a component due to blade bending. In
this section a matrix expression for the deflection component due to
blade bending is derived. The derivation involves establishling the
matrix equivalent of the analytical expression

zr_fj; M oar ar (A10)

The derlvation of the required matrix expression 1s illustrated herewith.
The integration is first illustrated with four stations and then extended

to more stations.

The blade stiffness and structural moment distributions are repre-
sented by the following step diagrems:

(® - 1) (R-h)‘t"(R-h)T(R-h)‘,'
EI»

EI3

EI bll EI5

L
-~

.025 .1 .2 .3 4 1.0
(r - B)/(R - h) |

Blade stiffness distribution
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Ar Ir Ar &
k(R-h)T(R-h)T(R-h)T(R-h)‘\‘
My M

2

M3z My,

M M5

r N J

.025 1 .2 .3 ' 1.0
(r - n)/(R - h)

Blade moment distribution

The segmental arrangement Jjust noted could be made differently, but
the particular arrangement shown was chosen for the reasons that: (1) it
permits a large change of blade stiffness at the blade hub, and (2) 1t
glves a moment station where there are large changes in moments when the
methods are applied to the hinged blade.

The blade angles B, resulting from the bending deflections are

r r
given by the equation B4 =f M ar |or the eqd. By = Z M oA
o EI o EI

end can be deduced, for example, from the foregoing distributions as
follows:

(r - h)
S 0.025,
. Jier.)
ol EIl L
(r - n) - 0.10
At (R- h) .10,

g, = L (&) Y2 5
T UEL;\L/ EIp\ k&
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At = 0.20,
(R - h)
M M, M
L) e far) M)
EI;\4 / EIp\ 4/ EI3
(r-h)_o
(R - 1) 30,

e = ok (&) 22 (5 8) DD () 4 2
L) EIp\ & Elz EI),

These distributions may be written in matrix form asg follows:

4 h - T ~ 9
B.o25 ——lg; - 0 0 0 M1
B.10 b 3 & 0 0 Mo
YEI, LEI,
\ ) = ] > (A11)
o & & ol |m
.20 JEI; UBI, EI, 3
Ar 3 Or e or
LB +350 JEI, L4EI, EIs EI, M
o L. - - A
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In order to extend the procedure to obtain the deflections in
terms of the moments, the following sketch proves helpful:

L_ Or Lr Ar Ar
®-n | ®R-1) @-hYT_m-hfj
2.35
2 Z.|25 A_B.Bo

z.15 [
| B.20
z.05 :
Jl_ Il B‘lo ) 1 | 1 5'{
.025 .10 .20 .30 4o
(r - b)/(R - h)
ap -8B oo
(R - h)
- o) (M ar\Ar
“=Po.os\z) " e 1)7
At (r;h) = 0.15,
(R - h)
M My &r AMp Ar
zZ = 20'05 + BO.lO Mr = 1 & + 1 + 2 Ar
EI; 8 YET; kET,
ap (Z-B) 0.25,
(R - h)

z = Zo.l5+BO.2oAT.‘= -----

29
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Extending and collecting terms and writing in matrix form yields the
following:

][R | 1
z2.05 EEE; o) 0 0 M3
—2 —2
2.15 3 3N o ||mp
J 8EI;  LEI,
2 2 2 l ( (A12)
2.5 5 &r° 64& A o | |ms
’ 8I; 4EIp EIj
—2 —2 —2 —2
2,35 T 9 2N N M,
| 8EI,  LEI EI;  EI,
“ -/ - ~ L S

Symbolizing the square matrix by [&M] gives equation (A12) ss

- B

Rearranging equation (Al12) to have the blade tip values in the
upper rows and extending to obtain deflection values at the twelve
selected stations results in the following matrix. (See figs. 1, 2,
and 3 for station location and the definition of the elements.)
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. E 2E° 3RS OLES S5E 6 1K 8F 21E 19&F°
-85 E;p EI EIg EIy EIg  El5 EL, EI3 LRI, Iy
. o E 2&E 3E WIE 3EF 6K 1K aE & (o]
& Ely EIg EIl; Eg EI; EL, EI;  LEI, = @&n
. o o E 2E 35 iE 3E & ak bE||,
<15 Elg  EI; Elg  EI;  EI,  Ely 4L, &L 9
. o o o g 2 E 3RS LR 5ES BBES BES ”
-65 EI; Elg  El; I,  EI3  LEI;  GEL) 8
. o o o o E 2E 3&S LES BES nE||,
2 Elg  El;  EI, EI; kB, &L 7
z 0 ) 0 0 ) B 2E 3E n»E 9E- Mag
b5 ELs BT, ET3 EI; &Iy
> = § 7 (A1k)
—2 —2 2 —e
& 2 4r S & T4
.35 ° 0 ° ° ° ° B, EI; hE, @I ||T®5
2 —2 —2
5,25 o o o 0 o [} 0 & 6 & & M),
EL; 4L, &I,
» —2 —2
3&E. 3A
z,15 o o 0 0 0 o o o &= Fr— ||
~2
z, 062 0 0 0 0 0 0 0 o 3E. 3E° Mga
. .5 i 32EI,  32EI;
=
o ) o 0 0 0 o 0 0 &_
Z.05 8311 .Ms * -
&
% 0125 0 0 0 ° 0 ° 0 ° ° 3%ET;
- », — -
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Equation (All) may be written as follows:

g h R
z [—1 2 3 4 5 6 T 8 2 1
.95 4 8
o 1 2 4 6 2k 17 (0o
Z.85 5 > 7 :‘ 5 510
z,75 o o 1 2 3 4 5 6 % 1—85 Mgy
z.65 o 0 0 1 2 3 k 5 3:8 lg Msg
2,55 o 0 0 0 1 2 3 & % lél- Mgy
2,45 ©o 0 0 0 0 1 2 3 % % | ¥es
P = 1 b (a)
z o 0o 0o o o o 1 2 2 I Mg
35 L 8 >
z.p5 6o 0 0 0 0 0 0 1 % % Mg),
3 3
z.0625 0o 0 0 0 0 0 0 O 55_2 322 Mg
z.05 © 0 0 0 0 0 0 0 O % LMSl
z,0125 o 0 O 0 0 0 0 O 31—2 i
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To extend to more stations, simply extend the established number
sequence in the rectangular matrix. Keep unit values on the extended
diagonal and zerces below. The procedure for obtaining the new moment

and deflection stations is as previously discussed in the [r] and.

[F] matrix derivations. The values of EI must pertalin to the new
moment stations.

The results obtained by using either equation (Al4k) or (Al15) have
been compared with results obtained by graphical numericsal double
integration of a known M and EI distribution, and the results
agree very well. If desired, the elements of equation (Alk) or (Al5)
could be determined experimentally f£rom the actual blade.
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1
: [1.00i{o}
TABLE I.- MODIFIED IDENTITY MATRTX |=-—-= 2 el
lo]t o
Moment station, (r - h)/(R - h) I Moment
{ By, stetion,
0.8 0.75 ©0.65 0.55 0.45 0.35 0.25 0.15 0.0625 0.0125 : r-h
R-h
[1.0 0 0 0 0 0 0 0 c o 1o 0.85
|
1
0 1.0 ) 0 ! 0 0 0 0 0 I o .15
I
1
0 ) 1.0 0 0 0 ) 0 0 0 o .65
|
I
0 ) 0 1.0 ) 0 0 ) ) 0 1o 55
|
t
0 ) ) 0 1.0 ) 0 0 0 ) 1o 45
I
. I
) ) 0 ) 0 1.0 0 ) o 0 I o .35
1
i
o 0 ) 0 0 0 1.0 0 0 0 10 .25
I
|
o) 0 0 0 0 0 ) 1.0 0 0 1o .15
[
1
o] 0 0 o] o] o] o] 0 1.0 o] o .0625
I
1
) 0 0 0 0 0 ) ) 0 1.0 Jo .0l25
I
___________________________________ - -————
0 0 0 0 ) 0 0 ) 0 ) o )
I
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TARLE II.- CENTRIFUGAL-FORCE MATRTX [F]

[n = 2]
Deflection station, -(r - b)/(R - b} Moment
0.95 0.85 0.75 0.65 0.55 0.5 0.5 0.25 0.15 0.0625 0.05 0.0125] |“pon”
R-n
T 0 0 0 0 0 ° 0 0 o ]| o8
n=10 ) . . - .
Fo Fy —n'%; Fn O 0 0 o o o o o o 15
n=10
Fo Fg Fg -g Fp O o o 0 0 o 0 o .65
D=1 -
Flp Fg - Tg Fy -m§ - Fp © 0 0 .o ) 0 0 L .55
n=10 .
Py Fg Fg Fq Fg -§ Fy © 0 o 0 0 0 A5
1=l :
Flo Fg TFg Fy Fg Fy 25 F, 0 0 0 0 0 .35
Fip Fg Tg ¥, Fg F5 F -n%‘ Fn 0 o 0 0 .25
n=10
Flo F9 Fg  F¢ T F5 B T ‘14?;3 Ta © ° 0 -5
Fio. Fg Tg Fq Fg Fs T Fy T 2, O ) .0625
n=]0
Flo Ty FTg Ty F F5  H T3 B ° Fy -nSﬂ" Fp| | 0125
| Fio Ty T Fy g Fs T, Fy F, 0 F, 0 0
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f-2}]

‘TARLE ITI.- DEFLECTION MATRIX ‘Eu

Mopent station, (r - B}/(R - k)

0.65 0.55 0.k5 0.33 0.25 0.13 0.0625 0.0125 |
1

0.75

0.85

i -
Wmﬁ s & & & & 5 s g 5 § g 4§
-
" 8 g & R » EN L - ,m 9 m
I o 3 o 3 S o o o o 3 S
& a a = = a = 3 = a =g a 3
1 ] [] 1 1 1 1 ]
A L) K.} ) ) {r.\ ) .._.v & & r,.h :_.h

.F_m,

W
B
L
Y

T}

,__m_m,

o

Teb?

.F_mo

o

T

e

ol

Tele?

T

T4

WO Y

¢

L2

7

[}




TABLE IV.- VERTICAL INERTIA HATHIX [y]

Deflection station, {(r - h}/(R - h) gﬂ,
0.93 0.55 .15 0.65 0.55 0.15 0.35 0.25 0.15 0.0625 0.05 0.0125 H
_A—mlo 0 0 0 0 0 0 0 0 0 0 0 i 0.85
2 Amy g Bmg o 0 o 0 0 o 0 0 0 o
3Emy, 2Amyg Arm g 0 0 o 0 0 0 0 0 0 65
Vamy, 3Amg 2Emg Erm, o o a 0 0 o 0 0 .55
5Emyy MAmg dhmg 2Emy Ky 0 ¢ 0 o 0 0 0 A
65m, DShmg LEmg 3Em; oEmg Ay 0 0 0 0 0 o 55
7 Ay 6 Amg DArmg b Arwy 3 Ammg 2 Fom,, = 0 0 0 Q 0 .25
8 &rmy 7 &g 6 Ammg 5 frmny 4 Armg 3 Arm,, 2 &y, fm 0 0 o 0 15
8.87 Armip 1.87&mg 6.07 Amg 3.87 Emy %.87Emg 3.07 Emg 2.57&my, 1.87 Bmy b7 5w, 0 0 0 0625
9.57 brmyg 8.37&mg 7.3Tamg 6.37Imq 5.37Emg .37 Ens 3.575wy, 257Ky 1L37Em, 0 STEm O o125
o5Fmy 838y ToEmg 63Ew 33Ewg Modm solw 5B 1sBg o s o | | e

8¢

®0¢h NI VOYN



TABLE V.- INTEGRATING MATRIX [r]

_ Loed stetion, (r - h)/(R - h) Bm‘;l

0.95 0.85 0.T5 0.65 0.55 0.5 0.35 0.25 0.15  0.0625 0.05 0.0125 -
-—Ar 0 0 0 0 0 0 0 0 0 o Q ] 0.65

2 Ar & 0 0 0 0 0 0 0 ) 0 o .5

34 2A&r Ar 0 ] 0 0 0 0 0 0 0 .65

b pr 3 Ar 2 & Ar 0 0 0 ) 0 0 0 ) .55

5 Ar 4 Ar 3 Ar 2 4&r Ax 0 0 0 0 0 0 0 5

6 ar 5 Ar b Ar 3 Ar 2 Ar &r 0 0 0 0 0 0 .35

T Ar 66 5S4 L Ar 3 Ar 2 i or 0 0 0 0 0 .25

8 Ar T Ar 6 Ar 54 -hoar 5 Ar 2 Ar Ar 0 0 0 0 W15
8.8T &r 7.87r 6.87 4 5.57T & L8T 4 %87 28740 1.87 Ar .87 ar 0 0 0 L0625
937 &r 837 &c T3T4r 63740 53748 k3T 3374 2374 137& O 3T Ar 0 0125
s Bsme T5E 634 s5m 3k som ssm ism o we o | | o

HOeH NI VOVN

6¢




TABLE VI.- AERODYNAMIC DAMPTNG MATRIX [A]

3]

o

Deflection etation, (r - h)/(R - h) stﬁi';?iﬁn,
0.95 ©0.85 075 0.65 0.5 0.4 035 0.25 0.15 0.0625 0.05 0.0125 -t
—Kcl-orlo 0 0 0 0 0 ] 0 0 0 0 ) i 0.9
0 Kegrg ) 0 0 0 0 0 0 0 0 0 .85
) 0 Kcgrg 0 0 ) ) 0 0 0 ] o
0 o] 0 Keqry o} 0 0 o 0 0 o} 0 .65
0 ) 0 0 Kegrg ! 0 0 0 0 0 ] -55
0 0 0 0 0 Kesrg 0 0 0 0 0 0 A5
0 g a 0 o O Kery 0 o 0 0 0 .35
0 ) 0 0 0 0 0 Kers 0 0 0 o .25
0 0 0 0 ) 0 0 0 Koty ) ) 0 .15
0 o v 0 0 0 0 o 0 o} o o .0625
0 0 0 0 0 ] 0 0 0 0 Ke,r) ] .05
| o 0 0 0 0 0 o 0 0 0 ) 0 | -.0125

ot

®0CH NI VOVN



TABIE VII.- CENTRIFUOAL-FCRCE MATRIX PARAMETRR f2[F], 1b, FOR EXAMPLE BLATE

[02 - nas7.c07 (rassmns/oec)?]

Deflsotion statiom, (¥ - h)/(R - 1) Im;'

0.9 0.03 0.75 0.63 0.5 0.43 0.35 0.25 0.13 0.0625 0.05 0.0125 E=f
[214%.988  ~21h%,588 0 0 0 0 ) 0 o 0 ) 0o 0.85
214),.588 1927.@ ~hoT2.ThO 0 0 0 0 0 0 0 0 0 T
2144,588  1907.752  1T00.G3T -5TT3.677 0 0 0 0 0 Q 0 o .65
2184.988  1927.752 1700.937 1113.766 -6687.L43 ] 0 0 0 0 0 0 55
2184.688 1927.752 1700.93T 113,766 1295.096 -01k0.499 0 0 o 0 0 o R,
214k.988 1RT.TH  1100.957 1U13.766 123.056  T09.538 -8029.837 O 0 0 0 0 .35
21,988 1%27.T52  1700.95T 113.766 1293.056  799.338  832.589 -gT62.le6 0 0 0 0 25
214,588 1927.752 1T00.937 1L13.T66 1293.056 789.338 852,580  6h7.621 -1OMLO.OAT 0 o 0 NL
2144988  1927.782  1T00.937 1U3.766 1253.006  789.338  32.%B9  6W7.62L  1995.66F -12405.911 0 o 0625
21hk.988 1%7.T32  1T00.937 1L13.766 1253.006  T89.338 832589 GT.6D.  1995.86h 0 1553.55L -13939.h62 125
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TABLE VIII.- VERTICAL-INERTIA MATRIX [M.o1, 1b-sec?, FOR EXAMPLE BLADE

Deflection station, (r - h}/(R - h) 5‘:::52:1,

0.95 0.85 0.7  0.65 0.55 0.5 0.35 0.25 0.15 0.0625 0.05 0.0125 H
1055058 0 0 0 ) 0 0 0 0 0 ) o | 0.8
106077 .0532Th o) 0 0 o 0 0 0 0 o 0 B
159116 .106549  .05%2Th o o’ 0 0 0 0 0 0 0 .65
212155 .15982h 106549 040251 0 0 ] 0 0 o 0 0 .55
26516%  .213099 .15982k .080503 .053519 O 0 0 0 0 ) 0 A5
318033 266575 213099 .120755 .107038 .041205 ] 0 0 0 0 o} 35
STI2T2 319649 (266375 161007 ©.1605%7 .082h10  .055882 0 0 o 0 0 .25
42311 37eg2h L3196k 201258 214077 (123615 111765 .060854 0 0 ] 0 .15
L7078 419538 .366263 .25&76 260859 .159669 .160661 .11L101 .273497 ) 0 0 0625
L0738 LLUELT6 (392901 (296603 287664 180271 .188602 - .1hL%528  h2gTBY 0 270199 ) .0125
3069 haBsT ags6e 6166 ook ks st asels MOST o b o | | o
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TABIE IX.- DEFLECTION MATRTX ['}ﬂxloﬂ!{r-h}:l POR EXAMPLE BLADE [(in/lb—in.)xlo'tinl

Moment station, (x - h)/(R - h) J o D:iigﬁ:r’m
0.85 0.5 0.65 0.5 Ok5 035 0.2 0.5 0.085 0.0125 ¢
:6.163 52,326 78.489 1ok.652 116.245 93.030 93.003 z8.712 12.825 7.619 :86.9257_ 0.9
I
0 26.165 52.326  T8.480 92.996 T7.525 T9.722 33.873 11.koo  6.817 i'rr.'m 05
0 0 26.165 52326 69.TMT 62.020 66.435 29.03%  9.975 6.015 | 6B.625 75
1
0 0 0 26,165 46498 6515 5348 24195 B.550  5.215 | 59.TS .65
i
4] 0 0 0 23.240 31,010 39.861 19.3%6  7.125 4.4 :50.525 .55
|
0 0 0 0 o} 15.505 26.57h 1k.517  5.700 3.609 :11-1.175 A5
i
0 0 0 0 0 0 13.2871 9.678 k.275  2.807 :32025 .35
I
0 0 0 0 0 0 1] 4,839 2.050 2.005 :22.875 .25
l
0 v 0 0 ] 0 0 0 1425 1,203 :15.725 A5
!
0 0 0 ¢ 0 0 0 0 178 501 : 5.7.8 0625
i
o 0 0 0 0 0 0 0 0 4oL : 4575 .05
I
0 0 0 0 0 0 0 0 0 .100 : L.1kh 0125
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TABLE X.- INTEGRATING MATRIX [r], in., FCR EXAMPLE BLADE

Load station, (r - h)/(R - h) B‘g:ﬁ“u:,
0.95 0.8 075 065 055 045 035 0.25 015 0.0625 0.05 0.0125 r=j
_9.150 0 0 0 0 0 0 0 0 0 0 0 ] 0.85
18.300  9.150 0 0 0 0 0 0 0 0 o 0 .5
27450 18300 9.150 O 0 0 0 0 0 0 0 o 65
36.600 27.u50 18,300  9.1%0 0 0 0 0 0 o o 0 .55
k5,750 36.600 27.450 18.300 9.150 0 0 0 o o Q o &5
2L.900 45.750  36.600 27.450 18.300 9.150 0 4] o] 0 (¢] o] 35
6h.050 5k.900 L5.TS0 36.:600 27.450 18.300 5.150 O ] 0 ] 0 25
73.200 64,050 54,900 A5.T50 36.600 27.450 18.300 9.150 0 0 0 0 .15
81.206 72.056 62.906 53.756 Lh.600 35.456 26,306 17.156  8.006 0 0 0 0625
8781 76.631  6T7.481 58.331  49.181 k0.031 30.881 21.73L 12.581 0 3.431 o] .0125
(.25 T 6oes wAm a5 WMAD Raes 285 BB o hsm o || o
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NACA TN 4304

45

\(+la + 1y + lgg + lgg + ZiV)dr

P
o

2 (+7.1H)d.r
[+ ]
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[]
8
°
[«

(a) Force system. T % o
vV
/ s
7/
< /
s
/
'\y‘ ™ 900

Rotor shaft.¢

(c) Geometry.

Plane of rotation
(b) Deflections.

Figure 1.~ Definitions of forece and geometric symbols.
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Hinge offset

0 ) 2 3 Y 5 .6 7 B .9 1.0
Spanwise station, r/R

Figure 3.~ Cantilever-blade segmental arrangement for the matrix tables.



Blads welght, 1b/in.
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Blade bending stitfnesa, BEI, 1o-1n. 2
"
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K B B 1.0 4] 2 4 8
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Figure k.- Blade weight and stiffnees used in the calculations.
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(a) Spanwise variation of first harmonic coefficients of blade alrload.
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(b) Calcéulated spanwise variation of first harmonic structural moment
coefficlents due to first hermonic alrload coefficlents.

Flgure 5.- Airloads and structural moments for hinged blade used in
numerical examples. '



NACA TN 430k 49

n 1.6
FE]
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S 7 = 2V + 3
oS 12— Iz,r = 12,C cos 2¥+ 12 g sin 2V /Zz,c
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Spenwise station, r/R

(a) Spanwise variation of second harmonic coefficients of blade airload.
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s - d . ﬁ|. L J |
e 0 .2 .3 4 .5 .6 .7 .8 .9 1.0

Spanwise stetion, r &R

(b) Calculated spanwise variation of second harmonic structural moment
coefficients due to second harmonic airload ccefficients,

Figure 6.- Airloads and structural moments for cantilever blade used in
numerical examples.
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Figure T.- Structural moment on zero-offset rotating hinged blade due to
100-pound concentrated loads at various stations.

5 x 102

\\\\ . N .-95

Blade bending moment, 1lb-in,
/

0 .1 .2 ) 4 5 .6 7 .8 .9 1.0
Spanwise station, r/R :

Figure 8.- Structural moment on rotating cantilever blade due to 100-
pound concentrated loads at variocus stations.
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Blade bending moment, Ib-In.
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Figure 9.- Bending moment and deflections on centilever blede in hovering. Thrust = 490 1b;

Spamyise station, r/R

OR = 497 ft/sec.
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